咨询热线:010-63716865

  当前位置 : 首页 > 资讯动态 > 相关技术 > 光热协同原理与技术突破
点击返回新闻列表  
光热协同原理与技术突破
发布时间:2025-09-23    浏览量:271

光热协同技术作为前沿交叉研究领域,通过光能与热能的协同增强效应,显著提升催化反应效率,成为能源转化和环境治理领域的研究热点。

协同效应机理深度解析

光热协同效应的本质在于光场与热场的相互作用。在光热协同过程中,光能激发产生高能载流子,热能则促进界面传质和反应动力学。中教金源GTS-500系统通过独立精确控制光照强度(0-2个太阳常数)和反应温度(室温-800℃),可实现光热参数的精准调控。系统配备的原位光谱接口,可实时监测反应过程中的材料结构和表面态变化,为机理研究提供直接证据。

材料设计创新突破

光热协同材料的理性设计是实现高效催化的关键。近年来,等离激元金属、缺陷工程材料和异质结催化剂等在光热协同催化中展现出优异性能。中教金源GTS-系列系统配备的特殊反应器设计,支持多种形态催化剂(粉末、薄膜、整体式)的评价,为新材料开发提供通用平台。系统的模块化设计允许快速更换反应器类型,满足不同材料体系的测试需求。

系统集成技术创新

中教金源GTS系列光热协同系统在技术集成方面实现重要突破。GTS-300系统采用光纤导光与红外加热的分离设计,避免相互干扰,确保实验条件准确性。GTS-600系统创新性地引入多光源耦合技术,支持紫外、可见、红外光源的独立或协同工作。智能控制系统可编程复杂的光热变化程序,模拟实际应用条件下的动态过程。


最新文章
面向产业化:光解水制氢技术的未来展望与中试挑战
当实验室的烧杯中不断刷新光解水催化剂的活性纪录时,一个更宏大而现实的问题摆在我们面前:如何将这项迷人的科学转化为可以大规模生产绿色氢气的工业技术?从毫克级的催化剂粉末到未来可能覆盖广阔土地或海域的规模化光解水系统,其间横亘着一道由材料工程、反应工程、系统工程共同构成的“创新峡谷”。北京中教金源科技有限公司从技术转化视角出发,展望光解水产业化的未来路径与核心挑战。
超越产氢速率:光解水性能的深度评价方法与标准
在光解水研究领域,仅仅报告一个“产氢速率”已远不能满足深入研究和学术交流的需求。不同的光源强度、光谱、反应器构型都会极大影响该数值,使其缺乏横向可比性。
高效光解水系统的核心构成与集成设计准则
在实验室中验证一个光解水催化剂的性能,其数据的可信度不仅取决于材料本身,更取决于评价平台的精密性与可靠性。一套设计粗糙、存在系统误差的装置,足以让优秀的催化剂“明珠蒙尘”,或让平庸的材料“虚假繁荣”。
2022-2025@北京中教金源科技有限公司 版权所有 京公安网备11010602007561        京ICP备10039872号

扫码添加客服

服务热线

010-63716865

扫一扫,了解更多