咨询热线:010-63716865

  当前位置 : 首页 > 资讯动态 > 相关技术 > 催化剂光解水原理-光解水制氢技术前沿及进展
点击返回新闻列表  
催化剂光解水原理-光解水制氢技术前沿及进展
发布时间:2022-10-31    浏览量:5585
1972年,日本学者Fujishima A和Honda K首次报道了TiO2单晶电极光解水产生氢气的实验研究,开辟了光解水制氢的新途径,通过太阳能光解水制氢也被认为是未来制取零碳氢气的最佳途径。随着电极电解水向半导体光催化分解水制氢的多相光催化的演变和TiO2以外的光催化剂的相继发现,兴起了以光催化方法分解水制氢的研究,并在光催化剂合成、改性等方面取得了较大进展。伴随氢能发展日渐升温,美国、欧洲、日本和中国等国家和地区均在持续推动光解水制氢的技术研发。

光解水制氢原理

光解水又称为光催化分解水,可理解为一种人工光合作用。科学原理是半导体材料的光电效应——当入射光的能量大于等于半导体的能带(Band Gap)时,光能被吸收,价带(VB)电子跃迁到导带(CB),产生光生电子(e-)和空穴(h+)。电子和空穴迁移到材料表面,与水发生氧化还原反应,产生氧气和氢气。光分解水制氢主要包括3个过程,即光吸收、光生电荷迁移和表面氧化还原反应。


光解水能否工业化取决于太阳能到氢(solar-to-hydrogen, STH)能量转换效率。光解水分为三种技术路线,一是光催化分解水,利用纳米粒子悬浮体系制氢,该种方式成本较低、易于规模化放大,但STH效率偏低(约1%)。高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等是这一路线后续研究的关键问题;二是光电催化分解水,在一些典型的光阳极半导体材料 (BiVO4和Ta3N5等) 体系上STH效率已超过 2.0%;三是光伏-光电耦合体系,在三种途径里STH效率最高, 在多个实验体系上已超过 10% 以上。最新报道的利用多结 GaInP/GaAs/Ge 电池与Ni电催化剂耦合, 其STH效率可达到 22.4%,已达到工业化应用要求。但光伏电池成本 (尤其是多结 GaAs太阳电池) 极大限制了其大面积规模化应用, 因而也是当前成本最高的技术路线(约300-400元/kg)。


最新文章
交叉与融合:二氧化碳还原前沿技术路径新探
在传统电催化和光催化路径之外,二氧化碳还原 的研究疆域正通过多学科深度交叉而不断拓展。这些新兴的前沿路径试图绕过现有技术的瓶颈,或通过独特的机制开辟新的可能性,展现了解决这一世纪难题的丰富想象力。北京中教金源科技有限公司 持续跟踪这些创新动态,本文将带您一览几种颇具潜力的前沿技术方向。
迈向工业化:二氧化碳还原技术的经济性分析与规模化挑战
任何一项能源转换技术能否最终走向市场,都需接受经济性的严苛拷问。对于二氧化碳还原 技术而言,其在实验室中实现的卓越“选择性”和“法拉第效率”,只是漫长产业化道路的起点。要实现真正的商业竞争力,必须将技术参数转化为经济指标,直面规模放大过程中的工程与成本挑战。北京中教金源科技有限公司 将结合能源电化学领域的工程经验,剖析影响该技术经济性的核心维度。
二氧化碳还原的价值闭环:从C1到C2+产物的应用前景分析
当我们将目光聚焦于二氧化碳还原 的技术突破时,一个同样关键却常被忽视的维度是:我们究竟要将CO₂还原成什么?不同的产物意味着截然不同的技术路线、经济价值和产业生态。从简单的一碳化合物到高附加值的多碳化学品,构建清晰的价值闭环,是这项技术从实验室走向规模化应用必须回答的战略问题。北京中教金源科技有限公司 将从产物价值链的角度,为您解析二氧化碳还原的终端应用图景。
2022-2025@北京中教金源科技有限公司 版权所有 京公安网备11010602007561        京ICP备10039872号

扫码添加客服

服务热线

010-63716865

扫一扫,了解更多

1.040138s